This page contains resources about Cryptography and Number Theory in general.

Subfields and ConceptsEdit

  • Modular Arithmetic
    • Lowest Common Multiple (LCM)
    • Greatest Common Divisor (GCD)
    • Prime Factorization
    • Euclidean Algorithm
    • Extended Euclidean Algorithm
    • Chinese Remainder Theorem
    • Diophantine Equations
    • Euler's Theorem
    • Fermat's Little Theorem
    • Wilson's Theorem
    • Fermat's Method of Infinite Descent
  • Cryptography Algorithms
    • Asymmetric (public key) Encryption
    • Symmetric (secret key) Encryption
    • Cryptographic Hash Functions
  • Cryptology
    • RSA Algorithm

Online coursesEdit

Video LecturesEdit

Lecture NotesEdit


  • Zhou, X. (2017). Number Theory - Modular Arithmetic: Math for Gifted Students. CreateSpace. 
  • Αντωνιάδης, Α. Γ., & Αριστείδης, Κ. (2015). Θεωρία Αριθµών και Εφαρµογές. Σύνδεσµος Ελληνικών Ακαδηµαϊκών Βιβλιοθηκών. [in Greek] (link
  • Burton, D. M. (2010). Elementary Number Theory. 7th Ed. McGraw-Hill Education.
  • Hong-Bing, Y. (2009). Problems of Number Theory in Mathematical Competitions (Volume 2). World Scientific. 
  • Andreescu, T., & Andrica, D. (2009). Number Theory: Structures, Examples, and Problems. Birkhäuser. 
  • Crawford, M. (2008). Introduction to Number Theory. 2nd Ed. AoPS Incorporated.
  • Andreescu, T., Andrica, D., & Feng, Z. (2007). 104 number theory problems: From the training of the USA IMO team. Birkhäuser.
  • Stopple, J. (2003). A primer of analytic number theory: from Pythagoras to Riemann. Cambridge University Press.
  • Adler, A., & Coury, J. E. (1995). Theory of Numbers: A Text and Source Book of Problems. Jones & Bartlett Pub.
  • Niven, I., Zuckerman, H. S., & Montgomery, H. L. (1991). An Introduction to the Theory of Numbers. 5th Ed. Wiley.
  • Hardy, G. H., & Wright, E. M. (1980). An Introduction to the Theory of Numbers. Oxford University Press.
  • Sierpinski, W. (1970). 250 problems in elementary number theory. Elsevier.


See alsoEdit

Other ResourcesEdit