Difference between revisions of "Data Science"

From Ioannis Kourouklides
Jump to navigation Jump to search
Line 35: Line 35:
   
 
==Other Resources==
 
==Other Resources==
  +
*[https://www.kdnuggets.com/2017/06/7-steps-mastering-data-preparation-python.html 7 Steps to Mastering Data Preparation with Python] - blog post
*
 

Revision as of 20:48, 9 July 2018

This page contains resources about Data Science, including Data Engineering.

Subfields and Concepts

  • Machine Learning / Data Mining
  • Exploratory Data Analysis
  • Parallel/Distributed/Concurrent Computing in Machine Learning
  • Data Engineering
  • Big Data

Online courses

Video Lectures

Lecture Notes

Books

  • Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley.
  • Schutt, R., & O'Neil, C. (2013). Doing data science: Straight talk from the frontline. O'Reilly Media, Inc.
  • Zumel, N., Mount, J., & Porzak, J. (2014). Practical data science with R. Manning.
  • Nolan, D., & Lang, D. T. (2015). Data Science in R: A Case Studies Approach to Computational Reasoning and Problem Solving. CRC Press.
  • Elston, S. F. (2015). Data Science in the Cloud with Microsoft Azure Machine Learning and R. O'Reilly Media, Inc.
  • Grus, J. (2015). Data Science from Scratch: First Principles with Python. O'Reilly Media.
  • Madhavan, S. (2015). Mastering Python for Data Science. Packt Publishing Ltd.
  • Blum, A., Hopcroft, J., & Kannan, R. (2015). Foundations of Data Science.
  • VanderPlas, J. (2016). Python Data Science Handbook: Essential Tools for Working with Data. O'Reilly Media.
  • Wickham, H., & Grolemund, G. (2017). R for Data Science. O'Reilly Media.

Software

See also

Other Resources