Difference between revisions of "Data Science"

From Ioannis Kourouklides
Jump to navigation Jump to search
Line 66: Line 66:
 
*[https://www.kdnuggets.com/2017/12/baesens-web-scraping-data-science-python.html Web Scraping for Data Science with Python] - blog post
 
*[https://www.kdnuggets.com/2017/12/baesens-web-scraping-data-science-python.html Web Scraping for Data Science with Python] - blog post
 
*[https://medium.com/@Petuum/intro-to-distributed-deep-learning-systems-a2e45c6b8e7 Intro to Distributed Deep Learning Systems] - blog post
 
*[https://medium.com/@Petuum/intro-to-distributed-deep-learning-systems-a2e45c6b8e7 Intro to Distributed Deep Learning Systems] - blog post
*[https://www.kaggle.com/ekami66/detailed-exploratory-data-analysis-with-python Detailed exploratory data analysis with python] - blog post
 
 
*[http://vlad17.github.io/COS513-Blog/ Princeton Commodities Modeling Blog]
 
*[http://vlad17.github.io/COS513-Blog/ Princeton Commodities Modeling Blog]
 
*[https://github.com/ajaymache/data-analysis-using-python Exploratory data analysis using Python for used car database taken from Kaggle] - Github
 
*[https://github.com/ajaymache/data-analysis-using-python Exploratory data analysis using Python for used car database taken from Kaggle] - Github

Revision as of 07:24, 20 July 2018

This page contains resources about Data Science, including Data Engineering.

Subfields and Concepts

  • Machine Learning / Data Mining
  • Exploratory Data Analysis
  • Data Preparation and Preprocessing
  • Parallel/Distributed/Concurrent Computing for Machine Learning
  • Data Engineering and Databases
  • Data Visualization
  • Big Data

Online courses

Video Lectures


Lecture Notes

Books

  • Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley.
  • Schutt, R., & O'Neil, C. (2013). Doing data science: Straight talk from the frontline. O'Reilly Media.
  • Leskovec, J., Rajaraman, A., & Ullman, J. D. (2014). Mining of massive datasets. Cambridge University Press. (link)
  • Zumel, N., Mount, J., & Porzak, J. (2014). Practical data science with R. Manning.
  • Nolan, D., & Lang, D. T. (2015). Data Science in R: A Case Studies Approach to Computational Reasoning and Problem Solving. CRC Press.
  • Elston, S. F. (2015). Data Science in the Cloud with Microsoft Azure Machine Learning and R. O'Reilly Media, Inc.
  • Grus, J. (2015). Data Science from Scratch: First Principles with Python. O'Reilly Media.
  • Madhavan, S. (2015). Mastering Python for Data Science. Packt Publishing Ltd.
  • Blum, A., Hopcroft, J., & Kannan, R. (2015). Foundations of Data Science.
  • VanderPlas, J. (2016). Python Data Science Handbook: Essential Tools for Working with Data. O'Reilly Media.
  • Wickham, H., & Grolemund, G. (2017). R for Data Science. O'Reilly Media.

Software

See also

Other Resources