Ensemble Learning

From Ioannis Kourouklides
Jump to navigation Jump to search

This page contains resources about Ensemble Learning, including Committee Machines.

Subfields and Concepts

Online Courses

Video Lectures

Lecture Notes

Books and Book Chapters

  • Zhou, Z. H. (2015). "Ensemble Learning". Encyclopedia of biometrics. Springer.
  • Zhou, Z. H. (2012). Ensemble methods: foundations and algorithms. CRC press.
  • Alpaydin, E. (2010). "Chapter 17: Combining Multiple Learners". Introduction to machine learning. MIT Press.
  • Russell, S. J., & Norvig, P. (2010). "Section 18.10: Ensemble Learning". Artificial Intelligence: A Modern Approach. Prentice Hall.
  • Bishop, C. M. (2006). "Chapter 9: Mixture Models and EM". Pattern Recognition and Machine Learning. Springer.
  • Bishop, C. M. (2006). "Chapter 14: Combining Models". Pattern Recognition and Machine Learning. Springer.
  • Kuncheva, L. I. (2004). Combining pattern classifiers: methods and algorithms. John Wiley & Sons.
  • Dietterich, T. G. (2002). "Ensemble Learning". The handbook of brain theory and neural networks. MIT Press.

Scholarly Articles

  • Dzeroski, S., & Zenko, B. (2004). Is combining classifiers with stacking better than selecting the best one?. Machine learning, 54(3), 255-273.



See also

Other Resources