International Mathematical Olympiad

From Ioannis Kourouklides
Jump to navigation Jump to search

This page contains resources about International Mathematical Olympiad and other Mathematics competitions.

Subfields and Concepts

Books

See also Recommended Books, Math Books and Olympiad Books.

  • Alijadallah Belabess, (2019). Advanced Olympiad Inequalities: Algebraic and Geometric Olympiad Inequalities. KDP.
  • Andreescu, T., Mortici, C., & Tetiva, M. (2017). Mathematical Bridges. Birkhäuser.
  • Xiong, B., & Lee, P. Y. (2017). Mathematical Olympiad in China (2011-2014): Problems and Solutions (Volume 15). World Scientific. 
  • Zhou, X. (2017). Art of Thinking: Math for Gifted Students. CreateSpace. 
  • Zhou, X. (2016). Power Calculation by Examples: Math for Gifted Students. CreateSpace.
  • Beekman, R. M. (2016). The Art of Mathematical Problem Solving. lulu.com.
  • Zhou, X. (2015). Indeterminate Equation: Math for Gifted Students. CreateSpace.
  • Becheanu, M., & Enescu, B. (2014). Balkan Mathematical Olympiads: The First 30 Years (1984-2013). Amer Mathematical Society.
  • Andreescu, T., & Enescu, B. (2012). Mathematical Olympiad Treasures. 2nd Ed. Birkhäuser.
  • Xiong, B., & Lee, P. Y. (2012). Mathematical Olympiad in China (2009-2010): Problems and Solutions (Volume 9). World Scientific.
  • Jiagu, X. (2012). Lecture Notes on Mathematical Olympiad Courses: For Senior Section (Volume 8). World Scientific.
  • Djukić, D., Janković, V., Matić, I., & Petrović, N. (2011). The IMO Compendium: A Collection of Problems Suggested for The International Mathematical Olympiads: 1959-2009. 2nd Ed. Springer.
  • Holton, D. (2011). A Second Step to Mathematical Olympiad Problems (Volume 7). World Scientific.
  • Chau, H. (2010). Selected Problems Of The Vietnamese Mathematical Olympiad (1962-2009) (Volume 5). World Scientific.
  • Jiagu, X. (2009). Lecture Notes on Mathematical Olympiad Courses: For Junior Section (Volume 6). World Scientific.
  • Holton, D. (2009). A First Step to Mathematical Olympiad Problems (Volume 1). World Scientific.
  • Batterson, J. (2009). Competition Math for Middle School. CreateSpace.
  • Hitchcock, G., & Zawaira, A. (2009). A primer for mathematics competitions. Oxford University Press.
  • Andreescu, T., & Gelca, R. (2009). Mathematical Olympiad Challenges. Birkhäuser.
  • Pólya, G., & Kilpatrick, J. (2009). The Stanford mathematics problem book: With hints and solutions. Dover Publications.
  • Rusczyk, R. (2009). Precalculus. AoPS Incorporated.
  • Xiong, B., & Lee, P. Y. (2009). Mathematical Olympiad in China (2007-2008): Problems and Solutions. World Scientific.
  • Xiong, B., & Lee, P. Y. (2007). Mathematical Olympiad in China: Problems and Solutions. World Scientific.
  • Faires, J. D. (2006). First steps for math olympians: using the American mathematics competitions. Mathematical Association of America.
  • Lehoczky, S., & Rusczyk, R. (2006). The Art of Problem Solving, Volume 1: the Basics. 7th Ed. AoPS Incorporated.
  • Lehoczky, S., & Rusczyk, R. (2006). The Art of Problem Solving, Volume 2: And Beyond. 7th Ed. AoPS Incorporated.
  • Zeitz, P. (2006). The Art and Craft of Problem Solving. 2nd Ed. Wiley.
  • Brânzei, D., Şerdean, I., & Şerdean, V. (2003). Junior Balkan Mathematical Olympiads. Plus.
  • Andreescu, T., & Andrica, D. (2003). 360 Problems for Mathematical Contests. GIL.
  • Βλάμος, Π. (2002). Βαλκανικές Μαθηματικές Ολυμπιάδες 1984 - 2001. Ελληνική Μαθηματική Εταιρεία. [in Greek] (link)
  • Pranesachar, C. R. (2000). Problem Primer for the Olympiad. Prism
  • Engel, A. (1999). Problem-Solving Strategies. Springer.
  • Yaglom, A. M., & Yaglom, I. M. (1987). Challenging Mathematical Problems With Elementary Solutions, Volume 1: Combinatorial Analysis and Probability Theory. Dover Publications.
  • Yaglom, A. M., & Yaglom, I. M. (1987). Challenging Mathematical Problems With Elementary Solutions, Volume 2: Problems from Various Branches of Mathematics. Dover Publications.
  • Larson, L. C. (1983). Problem-Solving Through Problems. Springer.

See also

Other Resources