Computational Finance

From Ioannis Kourouklides
Jump to navigation Jump to search

This page contains resources about Computational Finance, including Financial Engineering, Mathematical Finance, Quantitative Finance and Financial Econometrics.

Subfields and Concepts[edit]

  • Binomial Options Pricing Model
  • Black–Scholes Model
  • Capital Asset Pricing Model (CAPM)
  • Markowitz Model / Mean-Variance Model
  • Markov property
  • Martingale property
  • Efficient Market Hypothesis (EMH)
  • Capital Market Line
  • Financial Signal Processing
  • Financial Portfolio Management / Asset Allocation
  • Financial Risk Management
    • Value at Risk (VaR)
    • Sharpe ratio
    • Dispersion
    • Drawdown
    • Maximum Drawdown
    • Alpha
    • Beta

Online courses[edit]

Video Lectures[edit]

Lectures Notes[edit]

Books and Book Chapters[edit]

See also Reading List.

  • Lachowicz, P. (TBA). Python for Quants. Volume II. QuantAtRisk eBooks.
  • de Prado, M. L. (2018). Advances in financial machine learning. John Wiley & Sons.
  • Yan, Y. (2017). Python for Finance. 2nd Ed. Packt Publishing Ltd.
  • Akansu, A. N., Kulkarni, S. R., & Malioutov, D. M. (Eds.). (2016). Financial Signal Processing and Machine Learning. John Wiley & Sons.
  • Akansu, A. N., & Torun, M. U. (2015). A primer for financial engineering: financial signal processing and electronic trading. Academic Press.
  • Lachowicz, P. (2015). Python for Quants. Volume I. QuantAtRisk eBooks.
  • Hilpisch, Y. (2015). Derivatives Analytics with Python: Data Analysis, Models, Simulation, Calibration and Hedging. John Wiley & Sons.
  • Skoglund, J., & Chen, W. (2015). Financial risk management: Applications in market, credit, asset and liability management and firmwide risk. John Wiley & Sons.
  • Hull, J. (2015). Risk management and financial institutions. 4th Ed. John Wiley & Sons.
  • John, C. (2014). Options, Futures and other Derivative Securities. 9th Ed. Prentice HaII.
  • Hilpisch, Y. (2014). Python for Finance: Analyze Big Financial Data. O'Reilly Media.
  • Elton, E. J., Gruber, M. J., Brown, S. J., & Goetzmann, W. N. (2014). Modern portfolio theory and investment analysis. 9th Ed. John Wiley & Sons.
  • Benninga, S. (2014). Financial modeling. MIT Press.
  • Crack, T. F. (2014). Heard on the Street: Quantitative Questions from Wall Street Job Interviews. 15th Ed. Timothy Crack.
  • Crouhy, M., Galai, D., & Mark, R. (2014). The essentials of risk management. 2nd Ed. McGraw-Hill.
  • Chatterjee, R. (2014). Practical methods of financial engineering and risk management: tools for modern financial professionals. Apress.
  • Blyth, S. (2013). An introduction to quantitative finance. Oxford University Press.
  • Joshi, M. S., & Paterson, J. M. (2013). Introduction to Mathematical Portfolio Theory. Cambridge University Press.
  • Joshi, M. S., Denson, N., & Downes, A. (2013). Quant Job Interview: Questions and Answers. 2nd Ed. Pilot Whale Press.
  • Verbeek, M. (2012). A guide to modern econometrics. 4th Ed. John Wiley & Sons.
  • McKinney, W. (2012). Python for data analysis: Data wrangling with Pandas, NumPy, and IPython. O'Reilly Media.
  • Steland, A. (2012). Financial statistics and mathematical finance: methods, models and applications. John Wiley & Sons.
  • Hirsa, A. (2012). Computational methods in finance. CRC Press.
  • Alhabeeb, M. J. (2012). Mathematical finance. John Wiley & Sons.
  • Boyarshinov, V. (2012). Machine learning in computational finance: Practical algorithms for building artificial intelligence applications. LAP LAMBERT Academic Publishing.
  • Allen, S. (2012). Financial Risk Management: A Practitioner's Guide to Managing Market and Credit Risk. 2nd Ed. John Wiley & Sons.
  • Joshi, M. S. (2011). More Mathematical Finance. Pilot Whale.
  • Stefanica, D. (2011). A primer for the Mathematics of Financial Engineering. Fe Press.
  • Duffie, D. (2010). Dynamic asset pricing theory. Princeton University Press.
  • Tsay, R. S. (2010). Analysis of Financial Time Series. 3rd Ed. John Wiley & Sons.
  • Kennedy, D. (2010). Stochastic financial models. Chapman and Hall/CRC.
  • Jeanblanc, M., Yor, M., & Chesney, M. (2009). Mathematical methods for financial markets. Springer Science & Business Media.
  • Meucci, A. (2009). Risk and asset allocation. Springer Science & Business Media.
  • Wang, P. (2008). Financial econometrics. Routledge.
  • Zhou, X. (2008). A Practical Guide to Quantitative Finance Interviews. 14th Ed. CreateSpace.
  • Joshi, M. S. (2008). The concepts and practice of mathematical finance. 2nd Ed. Cambridge University Press.
  • Brooks, C. (2008). Introductory econometrics for finance. 2nd Ed. Cambridge University Press.
  • Bacon, C. R. (2008). Practical Portfolio Performance Measurement and Attribution. 2nd Ed. John Wiley & Sons.
  • Fusai, G., & Roncoroni, A. (2008). Implementing models in quantitative finance: methods and cases. Springer Science & Business Media.
  • Wilmott, P. (2007). Paul Wilmott introduces quantitative finance. John Wiley & Sons.
  • Estrada, J. (2007). Finance in a Nutshell: A No-nonsense Companion to the Tools and Techniques of Finance. Pearson Education.
  • Brabazon, A., & O'Neill, M. (2006). Biologically inspired algorithms for financial modelling. Springer Science & Business Media.
  • Seydel, R., & Seydel, R. (2006). Tools for computational finance. Springer.
  • Brandimarte, P. (2006). Numerical methods in finance and economics: a MATLAB-based introduction. 2nd Ed. John Wiley & Sons.
  • Higham, D. (2004). An introduction to financial option valuation: mathematics, stochastics and computation. Cambridge University Press.
  • Joshi, M. S. (2004). More Mathematical Finance. Cambridge University Press.
  • Joshi, M. S. (2004). The concepts and practice of mathematical finance. Cambridge University Press.
  • Cuthbertson, K., & Nitzsche, D. (2004). Quantitative financial economics: stocks, bonds and foreign exchange. 2nd Ed. John Wiley & Sons.
  • Glasserman, P. (2003). Monte Carlo methods in financial engineering. Springer Science & Business Media.
  • Feibel, B. J. (2003). Investment performance measurement. John Wiley & Sons.
  • Jackel, P. (2002). Monte Carlo methods in finance. John Wiley & Sons.
  • Cuthbertson, K., & Nitzsche, D. (2001). Financial engineering: derivatives and risk management. John Wiley & Sons.
  • Karatzas, I., & Shreve, S. E. (1998). Methods of mathematical finance. Springer Science & Business Media.
  • Luenberger, D. G. (1997). Investment science. Oxford University Press.
  • Campbell, J. Y., Lo, A. W. C., & MacKinlay, A. C. (1997). The econometrics of financial markets. 2nd Ed. Princeton University Press.
  • Baxter, M., & Rennie, A. (1996). Financial calculus: an introduction to derivative pricing. Cambridge University Press.
  • Dixit, A. K., & Pindyck, R. S. (1994). Investment under uncertainty. Princeton University Press.

Scholarly Articles[edit]

  • Boyd, S., Busseti, E., Diamond, S., Kahn, R. N., Koh, K., Nystrup, P., & Speth, J. (2017). Multi-period trading via convex optimization. Foundations and Trends® in Optimization, 3(1), 1-76.
  • Feng, Y., & Palomar, D. P. (2016). A signal processing perspective on financial engineering. Foundations and Trends® in Signal Processing, 9(1–2), 1-231.
  • Bonanno, G., Caldarelli, G., Lillo, F., Micciche, S., Vandewalle, N., & Mantegna, R. N. (2004). Networks of equities in financial markets. The European Physical Journal B, 38(2), 363-371.


See also[edit]

Other Resources[edit]