Computational Neuroscience

From Ioannis Kourouklides
Jump to navigation Jump to search

This page contains resources about Computational Neuroscience in general.

More specific information is included in each subfield.

Subfields and Concepts[edit]

See Category:Computational Neuroscience for some of its subfields.

  • Integrate-and-Fire Model
  • Izhikevich Spiking Neuron Model
  • The Hodgkin-Huxley Model
  • Hebbian Model
  • Consciousness
  • Cognition
  • Embodiment
  • Synaptic Plasticity
  • Connectome and Connectomics

Online Courses[edit]

Video Lectures[edit]

Lecture Notes[edit]


  • Ballard, D. H. (2015). Brain Computation as Hierarchical Abstraction. MIT Press.
  • Gerstner, W., Kistler, W. M., Naud, R., & Paninski, L. (2014). Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition. Cambridge University Press.
  • Mallot, H. A. (2013). Computational Neuroscience: A First Course. Springer.
  • Sterratt, D., Graham, B., Gillies, A., & Willshaw, D. (2011). Principles of Computational Modelling in Neuroscience. Cambridge University Press.
  • Izhikevich, E. M. (2010). Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. The MIT Press.
  • Trappenberg, T. (2010). Fundamentals of Computational Neuroscience. 2nd Ed. Oxford University Press.
  • Haykin, S. S. J., Príncipe, C., Sejnowski, T. J., & McWhirter, J. (Eds.). (2006). New Directions in Statistical Signal Processing: From Systems to Brain. MIT Press.
  • Dayan, P., & Abbott, L. F. (2005). Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press.
  • Arbib, M. A. (Ed.). (2003). The Handbook of Brain Theory and Neural Networks. MIT press.
  • Lytton, W. W. (2002). From Computer to Brain: Foundations of Computational Neuroscience. Springer Science & Business Media.
  • O'Reilly, R. C., & Munakata, Y. (2000). Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain. MIT press.
  • Sejnowski, T. J., & Churchland, P. S. (1992). The Computational Brain. MIT press.


  • BRIAN, a Python-based simulator
  • Emergent, neural simulation software.
  • GENESIS, a general neural simulation system.
  • ModelDB, a large open-access database of program codes of published computational neuroscience models.
  • MCell, Particle-based Monte Carlo simulator of microphysiology and cell signaling.
  • Nengo, a Python scriptable, GUI simulator for large-scale neural models
  • NEST, a simulation tool for large neuronal systems.
  • Neuroconstruct, software for developing biologically realistic 3D neural networks.
  • NEURON, a neuron simulator also useful to simulate neural networks.
  • SNNAP, a single neuron and neural network simulator tool.
  • ReMoto, a web-based simulator of the spinal cord and innervated muscles of the human leg.
  • EDLUT, a simulation software for large-scale neural networks and real-time control systems.

See also[edit]

Other Resources[edit]