Computer Vision

From Ioannis Kourouklides
Jump to navigation Jump to search

This page contains resources about Computer Vision, Machine Vision and Image Processing in general.

More specific information is included in each subfield.

Subfields and Concepts[edit]

See Category:Computer Vision for some of its subfields.

  • Image Preprocessing
    • Image Augmentation
  • Low-level Vision
    • Digital Image Processing
    • Feature extraction
      • Hough Transform
    • Feature detection
      • Edge detection
      • Corner detection
    • Optical flow
  • Intermediate-level Vision
    • Recognition tasks
      • Face recognition
    • Object detection
      • Face detection
      • Pedestrian detection
    • Image segmentation
    • Semantic image segmentation
    • Image registration
    • 3D reconstruction
    • Motion analysis
    • Texture Analysis and Synthesis
      • Co-occurrence Matrix
  • High-level Vision / Image Understanding
  • Structure from Motion
  • Simultaneous Localization and Mapping (SLAM)
  • 3D point clouds
  • Optical Character Recognition (OCR)
  • Place and Object recognition
    • Object detection
    • Object localization
    • Object classification
    • Scene classification
    • Scene recognition
    • Semantic Scene Understanding
  • Feature descriptors
    • Scale-invariant feature transform (SIFT)
    • Speeded up robust features (SURF)
    • Histogram of oriented gradients (HOG)
  • Medical Image Computing / Medical Image Analysis
  • (Combinatorial/Algorithmic) Computational Geometry & Discrete Geometry
  • Computer Graphics
    • Inverse Graphics

Online Courses[edit]

Video Lectures[edit]

Lecture Notes[edit]



  • Howse, J. (2013). OpenCV Computer Vision with Python. Packt Publishing Ltd.
  • Demaagd, K., Oliver, A., Oostendorp, N., & Scott, K. (2012). Practical Computer Vision with SimpleCV: The Simple Way to Make Technology See. O'Reilly Media, Inc.
  • Solem, J. E. (2012). Programming Computer Vision with Python: Tools and algorithms for analyzing images. O'Reilly Media, Inc.
  • Bradski, G., & Kaehler, A. (2008). Learning OpenCV: Computer Vision with the OpenCV Library. O'Reilly Media, Inc.


  • Szeliski, R. (2010). Computer Vision: Algorithms and Applications. Springer.
  • Zisserman, A., & Hartley, R. (2004). Multiple View Geometry in Computer Vision. Cambridge University Press.
  • Forsyth, D. A., & Ponce, J. (2002). Computer Vision: A Modern Approach. Prentice Hall.


  • Jahne, B., Geissler, P., & Haussecker, H. (1999). Handbook of Computer Vision and Applications with CD-ROM. Morgan Kaufmann Publishers Inc.


  • Boissonnat, J. D., Chazal, F., & Yvinec, M. (2018). Geometric and Topological Inference. Cambridge University Press. (link)
  • Prince, S. J. D. (2012). Computer Vision: Models, Learning, and Inference. Cambridge University Press.
  • Nowozin, S., & Lampert, C. H. (2011). Structured Prediction and Learning in Computer Vision. Foundations and Trends in Computer Graphics and Vision, 6(3-4), 3-4.
  • Hyvarinen, A., Hurri, J. & Hoyer, P. O. (2009). Natural Image Statistics: A Probabilistic Approach to Early Computational Vision. Springer.
  • Ma, Y. (Ed.). (2004). An Invitation to 3D Vision: From Images to Geometric Models. Springer.



See also[edit]

Other Resources[edit]