Data Science

From Ioannis Kourouklides
Jump to navigation Jump to search

This page contains resources about Data Science, Data Engineering and Data Management.

Subfields and Concepts[edit]

  • Agile Data Science
  • Machine Learning / Data Mining
  • Exploratory Data Analysis (EDA)
  • Data Preparation and Data Preprocessing
  • Data Fusion and Data Integration
  • Data Wrangling / Data Munging
  • Data Scraping
  • Data Sampling
  • Data Cleaning
  • Data Visualization
  • Explainable AI (XAI) / Interpretable AI
  • Big Data
  • Data Engineering, Data Management and Databases
  • High Performance/Parallel/Distributed/Cloud Computing for Machine Learning
  • Concurrent/Multi-threading Computing for Machine Learning
  • Synchronous Communication (for Web Services)
    • Representational State Transfer (REST) Protocol
    • Remote Procedure Call (RPC)
    • Simple Object Access Protocol (SOAP)
  • Asynchronous Communication / Asynchronous Messaging (for Web Services)
    • Message broker/Message bus/Event bus/Integration broker/Interface engine
    • Message queue
    • Asynchronous protocols
      • Advanced Message Queuing Protocol (AMQP)
      • MQ Telemetry Transport (MQTT)
  • Messaging patterns
    • Fire-and-Forget / One-Way
    • Request-Response / Request-Reply
    • Publisher-Subscriber
    • Request-Callback
  • Software Architecture
    • Monolithic Architecture
    • Microservices Architecture
    • Service-Oriented Architecture (SOA)
  • Stream Processing

Online courses[edit]

Video Lectures[edit]

Lecture Notes[edit]

Books[edit]

  • Newman, S. (2021). Building Microservices: Designing Fine-Grained Systems. 2nd Ed. O'Reilly Media.
  • Bellemare, A. (2020). Building Event-Driven Microservices: Leveraging Organizational Data at Scale. O'Reilly Media.
  • Richards, M. (2020). Fundamentals of Software Architecture. O'Reilly Media.
  • Dean A., & Crettaz, V. (2019). Event Streams in Action. Manning.
  • Richardson, C. (2018). Microservices Patterns. Manning Publications.
  • Pacheco, V. F. (2018). Microservice Patterns and Best Practices. Packt Publishing.
  • De la Torre C., Wagner, B., & Rousos, M. (2018). .NET Microservices: Architecture for Containerized .NET Applications. Microsoft Corporation. (link)
  • Lanaro, G. (2017). Python High Performance. Packt Publishing.
  • Wickham, H., & Grolemund, G. (2017). R for Data Science. O'Reilly Media.
  • Kleppmann, M. (2017). Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems. O'Reilly Media.
  • VanderPlas, J. (2016). Python Data Science Handbook: Essential Tools for Working with Data. O'Reilly Media.
  • Pierfederici, F. (2016). Distributed Computing with Python. Packt Publishing.
  • Dunning, T., & Friedman, E. (2016). Streaming Architecture: New Designs Using Apache Kafka and MapR Streams. O'Reilly Media.
  • Nolan, D., & Lang, D. T. (2015). Data Science in R: A Case Studies Approach to Computational Reasoning and Problem Solving. CRC Press.
  • Elston, S. F. (2015). Data Science in the Cloud with Microsoft Azure Machine Learning and R. O'Reilly Media, Inc.
  • Grus, J. (2015). Data Science from Scratch: First Principles with Python. O'Reilly Media.
  • Madhavan, S. (2015). Mastering Python for Data Science. Packt Publishing.
  • Kale, V. (2015). Guide to Cloud Computing for Business and Technology Managers: From Distributed Computing to Cloudware Applications. CRC Press.
  • Ejsmont, A. (2015). Web Scalability for Startup Engineers. McGraw Hill.
  • Leskovec, J., Rajaraman, A., & Ullman, J. D. (2014). Mining of Massive Datasets. Cambridge University Press. (link)
  • Zumel, N., Mount, J., & Porzak, J. (2014). Practical Data Science with R. Manning.
  • Schutt, R., & O'Neil, C. (2013). Doing Data Science: Straight Talk from the Frontline. O'Reilly Media.
  • Videla, A., & J.W. Williams, J. (2012). RabbitMQ in Action. Manning.
  • Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley.

Scholarly Articles[edit]

  • Verbraeken, J., Wolting, M., Katzy, J., Kloppenburg, J., Verbelen, T., & Rellermeyer, J. S. (2020). A Survey on Distributed Machine Learning. ACM Computing Surveys (CSUR), 53(2), 1-33.
  • Buchlovsky, P. ... (2018). TF-Replicator: Distributed Machine Learning for Researchers. arXiv preprint arXiv:1902.00465.
  • Kang, D., Emmons, J., Abuzaid, F., Bailis, P., & Zaharia, M. (2017). NoScope: optimizing neural network queries over video at scale. Proceedings of the VLDB Endowment, 10(11), 1586-1597.
  • Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why Should I Trust You? Explaining the Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1135-1144).
  • Xing, E. P., Ho, Q., Xie, P., & Wei, D. (2016). Strategies and principles of distributed machine learning on big data. Engineering, 2(2), 179-195.
  • Salloum, S., Dautov, R., Chen, X., Peng, P. X., & Huang, J. Z. (2016). Big data analytics on Apache Spark. International Journal of Data Science and Analytics, 1(3-4), 145-164.
  • Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., ... & Dennison, D. (2015). Hidden technical debt in machine learning systems. In Advances in Neural Information Processing Systems (pp. 2503-2511).
  • Huang, Y., Zhu, F., Yuan, M., Deng, K., Li, Y., Ni, B., ... & Zeng, J. (2015). Telco Churn Prediction with Big Data. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data (pp. 607-618).
  • Moritz, P., Nishihara, R., Stoica, I., & Jordan, M. I. (2015). SparkNet: Training Deep Networks in Spark. arXiv preprint arXiv:1511.06051.
  • Upadhyaya, S. R. (2013). Parallel approaches to machine learning—A comprehensive survey. Journal of Parallel and Distributed Computing, 73(3), 284-292.
  • Sakr, S., Liu, A., Batista, D. M., & Alomari, M. (2011). A survey of large scale data management approaches in cloud environments. IEEE Communications Surveys & Tutorials, 13(3), 311-336.
  • Abadi, D. J. (2009). Data management in the cloud: Limitations and opportunities. IEEE Data Eng. Bull., 32(1), 3-12.

Software[edit]

See also[edit]

Other Resources[edit]

General[edit]

Data Annotation & Labelling[edit]

EDA[edit]

Asynchronous Communication & Microservices[edit]

Distributed Systems[edit]

Deployment and Production[edit]