Transfer Learning

From Ioannis Kourouklides
Jump to navigation Jump to search

This page contains resources about Transfer Learning and Inductive Transfer.

Subfields and Concepts[edit]

  • Direct Pretraining
  • Learning to Learn / Meta Learning
  • Multi-task Learning
  • Collaborative Filtering
  • Lifelong Learning / Continual Learning
    • Variational Continual Learning (VCL)
    • Reinforced Continual Learning (RCL)
    • Dynamically Expandable Network (DEN)
    • Progressive Neural Network (PGN)
  • Automatic Machine Learning (AutoML)
  • Few-shot Learning
  • One-shot Learning
  • Zero-shot Learning
  • Catastrophic forgetting
  • Neural Architecture Search (NAS) for ANNs

Online Courses[edit]

Video Lectures[edit]

Lecture Notes[edit]

Books and Book Chapters[edit]

  • Chen, Z., & Liu, B. (2018). Lifelong machine learning. 2nd Ed. Morgan & Claypool.
  • Sarkar, D., Bali, R., & Ghosh, T. (2018). Hands-On Transfer Learning with Python. Packt Publishing.
  • Thrun, S., & Pratt, L. (Eds.). (1998). Learning to learn. Springer Science & Business Media.

Scholarly Articles[edit]

  • T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, S. Levine, and C. Finn, (2019). Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning. In 3rd Conference on Robot Learning (CoRL 2019).
  • Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., & Wermter, S. (2019). Continual lifelong learning with neural networks: A review. Neural Networks.
  • Wang, Y., & Yao, Q. (2019). Few-shot Learning: A Survey. arXiv preprint arXiv:1904.05046.
  • Pham, H., Guan, M., Zoph, B., Le, Q., & Dean, J. (2018). Efficient Neural Architecture Search via Parameter Sharing. In Proceeding of the 35th International Conference on Machine Learning (pp. 4092-4101).
  • Xu, J., & Zhu, Z. (2018). Reinforced continual learning. In Advances in Neural Information Processing Systems (pp. 899-908).
  • Snell, J., Swersky, K., & Zemel, R. (2017). Prototypical networks for few-shot learning. In Advances in Neural Information Processing Systems (pp. 4077-4087).
  • Munkhdalai, T., & Yu, H. (2017). Meta networks. In Proceedings of the 34th International Conference on Machine Learning (pp. 2554-2563).
  • Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the 34th International Conference on Machine Learning (pp. 1126-1135).
  • Ruder, S. (2017). An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098.
  • Zoph, B., & Le, Q. V. (2016). Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578.
  • Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A Survey of Transfer Learning. Journal of Big data, 3(1), 9.
  • Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., & Lillicrap, T. (2016). Meta-learning with memory-augmented neural networks. In Proceedings of the 33rd International Conference on Machine Learning (pp. 1842-1850).
  • Vinyals, O., Blundell, C., Lillicrap, T., & Wierstra, D. (2016). Matching networks for one shot learning. In Advances in Neural Information Processing Systems (pp. 3630-3638).
  • Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks?. In Advances in Neural Information Processing Systems (pp. 3320-3328).
  • van Rijn, J. N., Holmes, G., Pfahringer, B., & Vanschoren, J. (2014). Algorithm selection on data streams. In International Conference on Discovery Science (pp. 325-336). Springer.
  • Vanschoren, J., Blockeel, H., Pfahringer, B., & Holmes, G. (2012). Experiment databases. Machine Learning, 87(2), 127-158.
  • Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345-1359.
  • Parameswaran, S., & Weinberger, K. Q. (2010). Large margin multi-task metric learning. In Advances in Neural Information Processing Systems (pp. 1867-1875).
  • Torrey, L., & Shavlik, J. (2010). Transfer learning. In Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques (pp. 242-264). IGI Global.
  • Taylor, M. E., & Stone, P. (2009). Transfer learning for reinforcement learning domains: A survey. Journal of Machine Learning Research, 10, 1633-1685.
  • Dai, W., Jin, O., Xue, G. R., Yang, Q., & Yu, Y. (2009). Eigentransfer: A unified framework for transfer learning. In Proceedings of the 26th International Conference on Machine Learning (pp. 193-200).
  • Weinberger, K., Dasgupta, A., Langford, J., Smola, A., & Attenberg, J. (2009). Feature hashing for large scale multitask learning. In Proceedings of the 26th International Conference on Machine Learning (pp. 1113-1120).
  • Caruana, R. (1997). Multitask learning. Machine Learning, 28(1), 41-75.

Software[edit]

See also [edit]

Other Resources [edit]